
Path to Hardware Agility
Maarit Laanti, 01-February, 2024

WIKIAGILE

Maarit Laanti

2

Ph.D., SAFe Fellow, SPCT 6.0, RTE 6.0

2023 Partner @ wikiflow, Partner @WikiAgile
XP 2023 conference Education & Learning track chair
Trained > 3000 people

2020 SAFE® Fellow
2019 Nominated to LIA100 – top 100 women contributing Lean & Agile

2016 SAFe SPCT
2014 Contributor to Lean-Agile Budgeting in SAFe 3.0
2013 Founded of Nitor Delta, and brought SAFe to Europe

Ph.D. “Agile Methods in Large-Scale Software Development
Organizations Applicability and Model for Adoption”

2012 20 years of product development at Nokia

WikiAgile & wikiflow
Partner, SAFe Fellow,
SPCT 6.0

LinkedIn

http://www.linkedin.com/in/virpirowe

© WikiAgile Oy 2024. All rights reserved.

My path to Hardware Agile

3

2020
1st Agile Hardware training & transformation coaching “Heavy metal”

2009
Started hardware workshops on the Electronics (motherboard, display, and camera)
Research paper Piloting Lean-Agile Hardware Development

2021
2nd Agile Hardware Training & transformation coaching “inside chips”

2022 Collaboration with Joe Justice started
3rd Agile Hardware Training

2024
Whitepaper “Accelerating Product Development with Agile Practices in Hardware Design”

“That is not
what I
mean with
hardware”

https://www.researchgate.net/profile/Laanti-Maarit/publication/308869388_Piloting_Lean-Agile_Hardware_Development/links/5a79d8e3aca2722e4df4e521/Piloting-Lean-Agile-Hardware-Development.pdf

© WikiAgile Oy 2024. All rights reserved.

Download the whitepaper from wikiagile.com!

4

5
© WikiAgile Oy 2024. All rights reserved.

How hard we see adoption of agile?

5

Agile methods
originate from
teams
developing
software

Programmable
ASICs

Microcode

Electronics - due
to manufacturing
/ supplier value
chains

Cyber-physical
systems and
heavy hardware -
due to value
stream networks

Manufacturing
sites

Harder ImpossibleMainstream Challenge

6
© WikiAgile Oy 2024. All rights reserved.

The usual path to Hardware Agile

Original interest

Denial: this is for software

A chock: many product companies are already doing this

Understanding: we can benefit from communication and teamwork
starting: Big room planning

Understanding: software / whole product will benefit from faster feedback
Starting: testing & feedback investments, pilots to develop testing

equipment

Learning: strong modularity (interfaces first) and iterating
modules leads to better hardware

Learning: test automation is investment and leads to
shortened cycles and better quality

Learning: modelling with software / 3D first
/RoboMob

There is no return: we do things
that were previously not possible

© WikiAgile Oy 2024. All rights reserved.

Warning: There is no such thing as Agile
Hardware Development

FROM
Ø Product development division to

hardware and software departments

Ø Quality verified at the end

Ø Long design cycle targeting to error-free
manufacturing instructions

TO
Ø Hardware or product being modeled by

software or 3D before it gets built; digital
twins

Ø Test-first approaches

Ø Digitalization leading to disruption:
innovation is what matters – concurrent
engineering taken to extreme

Ø It is a holistic Agile Product Development Change

7

8
© WikiAgile Oy 2024. All rights reserved.

Why Point-Based Design Fails?
Bicycle Factory Example

Typical case: five subsystems; each finding optimal solution on their own
Ø Suspension
Ø Gears

Ø Brakes
Ø Wheels

Ø Frames

Subsystem design is done so that it will best support the system design

ü 20% change that each subsystem will cause major problem (market miss,
project delay, etc.) + 40% change it will not work well together

ü Probability of ach subsystem to success = 0.8; for systems integration = 0.6,
Overall success probability 0.2!!!

9
© WikiAgile Oy 2024. All rights reserved.

Why Hardware Agility Pays Off?

Split Large Projects into Small,
Independent projects

ü Object-oriented architecture is an
agile risk reduction strategy

ü Optimum project size increases as
technical excellence and
automation improve

10
© WikiAgile Oy 2024. All rights reserved.

Incremental Approach
for Product Development

Deliver as fast as possible:

ü Fastest time to market with minimum marketable
features

ü Continuous validation ensuring fast enough final
product validation

ü Continuous inspect & adapt cycles ensuring fast
feedback and adaptation to changes

Final Product
Validation

Content to be
productised

Sales

Inspect
& Adapt

Fastest ROI with
minimum marketable

features

Product
Increment

Product
Increment

Product
Increment

Product Abstract

Inspect
& Adapt

Inspect
& Adapt

Inspect
& Adapt

Continuous
Validation

Product
Increment

What would it mean, if some of
these increments were software

models of hardware?

© WikiAgile Oy 2024. All rights reserved.

Pre-requisites for Agile Hardware Development
Understand & define modules

11

Modular architecture is the key!

© WikiAgile Oy 2024. All rights reserved.

Step 1 – Identify current iteration lengths on hardware

● Different hardware modules have different
iteration lengths, and the amount of time
needed

● Iteration cycle length may vary a lot
depending on what type of hardware you
are working on

● The cycle starts from design or
specifications and ends when you test it

● The overall cycle time within that specific
value stream is a sum of all iterations

● Note that a same module can be used in
multiple value streams

12

Option to speed up: Consider modularization of the part that
has the longest iteration cycles. This could give several
hundred percent improvements in overall time-to-market,
resulting in significant business benefits.

© WikiAgile Oy 2024. All rights reserved.

Step 2: Apply value stream thinking
to development value streams

● Understand which teams contribute to
overall design together

● Create a set of connected Kanbans to
manage the work in Value streams

13

Value 0.5 h 10 min 10 min 2 h 2 h 5 min S 4 h 55 min

Waste 3 h 4 d 1 d 1 d 6 d S 12.5 d

WORK IN PROGRESS

Write Up
Idea

Write
Story

ImplementationTest
Case DeployIntegrate

& Test
BACKLOG

© WikiAgile Oy 2024. All rights reserved.

Step 3: Implement Rolling planning

Rolling planning involves two-level
approach, consisting of:

1. A high-level overall schedule,
and

2. A more detailed schedule for
the next iteration level

● Rolling planning is needed because of
”single” delivery

● As we execute each iteration, we reflect
the learning to the higher-level plan and
adjust this long-term plan as we see
necessary

14

Iteration 1 Iteration 2 Iteration 3 Iteration 4

© WikiAgile Oy 2024. All rights reserved.

Step 4: Synchronize the iterations of
the hardware modules

● With hardware, we cannot follow/ adjust to
just any cadence – we need to build the
frame understanding our own development

● Synchronization allows the creation of
common testing points

● If the 4-week cycle syncs every 6 weeks we
can test every six weeks – with no sync every
12 weeks

● Quite often we see hardware
organizations working with a 3-month
cadence

● What are the options of speeding the
feedback?

15

4 wk 4 wk 4 wk 4 wk 4 wk 4 wk

6 wk 6 wk 6 wk 6 wk

© WikiAgile Oy 2024. All rights reserved.

Step 5: Apply Big room planning for
managing dependencies and introducing cadence

● Agile hardware development starts usually
as a design & process change, but in the
second phase a tools change is needed

● Visual planning is easy practice” to start
with à just improves communication, and
does not require anything specific to work

● A modern, digital “war-room” with up-to-
date information helps to keep everyone
on the same page; motivated and aligned

16

Current
version

Goals

Kanban
boards

Release
plans

Expected
output

Release
Goals

Daily
calendar

Issue
boardMetrics

Weekly
schedule

Actions

Daily sync

Errors

17
© WikiAgile Oy 2024. All rights reserved.

Step 6: Define hardware modules
as Capabilities

Epics

Capabilities Capability Enablers

Features Feature Enablers

Stories Story Enablers

• A common information model allows
modelling the requirements for the entire
product – software, and hardware

• A Story may or may not have a
parenting Feature

• A Feature may or may not have a
parenting Capability

• All Capabilities, Features, and Stories
will have an identifier for traceability
– and for fulfilment of any
compliance requirements

© WikiAgile Oy 2024. All rights reserved.

They may be several versions of Capabilities
that go to different releases

• This is supporting modular
iterations of hardware
components

Product X

Capability ARelease A

Release B

Release C

Capability B

Capability C

© WikiAgile Oy 2024. All rights reserved.

Step 7: Apply Set-based design
for managing risk and product lifecycle

● Find design constraints, and find solutions
that fit into that space

● Integrate and explore the best solutions
● Limit the final selection at the very end

● Use set-based design, especially in areas
that contain the highest reward and
highest risk

● This allows design to co-evolve in the
future

19

© WikiAgile Oy 2024. All rights reserved.

The future: Products as a Service Business?

● Agile has enabled continuous releases &
transformed vendors from product to service
business

● Modules having different life cycles are
designed to be exchanged in the future. In
this sequence of product upgrades one
module at a time is exchanged for a newer
version. This extends the whole product
lifecycle significantly.

● The United Nations, together with the European
Union, has set ambitious goals for Sustainable
Development Actions (SDGS). Goal number 12 is
about Responsible Production and Consumption.

● One of the goals listed for this initiative is to
“Support developing countries to strengthen
their scientific and technological capacity to
move towards more sustainable patterns of
consumption and production”.

20

21
© WikiAgile Oy 2024. All rights reserved.

Yes – it is all possible! See SpaceX

Source: Wikipedia, https://en.wikipedia.org/wiki/List_of_Falcon_9_and_Falcon_Heavy_launches

© WikiAgile Oy 2024. All rights reserved.

More Information on

22
2018

2019

2023

2023

2021

Thank you
Maarit Laanti

maarit@wikiagile.com
www.linkedin.com/in/mlaanti

mailto:maarit@wikiagile.com
http://www.linkedin.com/in/mlaanti

