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My path to Hardware Agile
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2020
1st Agile Hardware training & transformation coaching  “Heavy metal” 

2009
Started hardware workshops on the Electronics (motherboard, display, and camera) 
Research paper Piloting Lean-Agile Hardware Development

2021
2nd Agile Hardware Training & transformation coaching “inside chips”

2022 Collaboration with Joe Justice started
3rd Agile Hardware Training

2024
Whitepaper “Accelerating Product Development with Agile Practices in Hardware Design” 

“That is not 
what I 
mean with 
hardware”

https://www.researchgate.net/profile/Laanti-Maarit/publication/308869388_Piloting_Lean-Agile_Hardware_Development/links/5a79d8e3aca2722e4df4e521/Piloting-Lean-Agile-Hardware-Development.pdf
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Download the whitepaper from wikiagile.com!
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How hard we see adoption of agile?
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Agile methods 
originate from 
teams 
developing 
software

Programmable 
ASICs

Microcode

Electronics - due 
to manufacturing 
/ supplier value 
chains

Cyber-physical 
systems and 
heavy hardware -
due to value 
stream networks

Manufacturing 
sites

Harder ImpossibleMainstream Challenge
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The usual path to Hardware Agile

Original interest

Denial: this is for software

A chock: many product companies are already doing this

Understanding: we can benefit from communication and teamwork
starting: Big room planning

Understanding: software / whole product will benefit from faster feedback
Starting: testing & feedback investments, pilots to develop testing 

equipment

Learning: strong modularity (interfaces first) and iterating 
modules leads to better hardware

Learning: test automation is investment and leads to 
shortened cycles and better quality 

Learning: modelling with software / 3D first
/RoboMob

There is no return: we do things 
that were previously not possible 
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Warning: There is no such thing as Agile 
Hardware Development

FROM
Ø Product development division to 

hardware and software departments

Ø Quality verified at the end

Ø Long design cycle targeting to error-free 
manufacturing instructions

TO
Ø Hardware or product being modeled by 

software or 3D before it gets built; digital 
twins

Ø Test-first approaches

Ø Digitalization leading to disruption: 
innovation is what matters – concurrent 
engineering taken to extreme

Ø It is a holistic Agile Product Development Change
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Why Point-Based Design Fails?
Bicycle Factory Example

Typical case: five subsystems; each finding optimal solution on their own
Ø Suspension
Ø Gears

Ø Brakes
Ø Wheels

Ø Frames

Subsystem design is done so that it will best support the system design

ü 20% change that each subsystem will cause major problem (market miss, 
project delay, etc.) + 40% change it will not work well together

ü Probability of ach subsystem to success = 0.8; for systems integration = 0.6, 
Overall success probability 0.2!!!
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Why Hardware Agility Pays Off?

Split Large Projects into Small, 
Independent projects

ü Object-oriented architecture is an 
agile risk reduction strategy

ü Optimum project size increases as  
technical excellence and 
automation improve
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Incremental Approach 
for Product Development

Deliver as fast as possible:

ü Fastest time to market with minimum marketable 
features

ü Continuous validation ensuring fast enough final 
product validation

ü Continuous inspect & adapt cycles ensuring fast 
feedback and adaptation to changes

Final Product 
Validation

Content to be 
productised

Sales

Inspect  
& Adapt

Fastest ROI with 
minimum marketable 

features

Product 
Increment

Product 
Increment

Product 
Increment

Product Abstract

Inspect  
& Adapt

Inspect  
& Adapt

Inspect  
& Adapt

Continuous 
Validation

Product 
Increment

What would it mean, if some of 
these increments were software 

models of hardware?
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Pre-requisites for Agile Hardware Development
Understand & define modules
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Modular architecture is the key!
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Step 1 – Identify current iteration lengths on hardware 

● Different hardware modules have different 
iteration lengths, and the amount of time 
needed

● Iteration cycle length may vary a lot 
depending on what type of hardware you 
are working on

● The cycle starts from design or 
specifications and ends when you test it

● The overall cycle time within that specific 
value stream is a sum of all iterations

● Note that a same module can be used in 
multiple value streams
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Option to speed up: Consider modularization of the part that 
has the longest iteration cycles. This could give several 
hundred percent improvements in overall time-to-market, 
resulting in significant business benefits. 
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Step 2: Apply value stream thinking 
to development value streams 

● Understand which teams contribute to 
overall design together

● Create a set of connected Kanbans to 
manage the work in Value streams
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Value 0.5 h 10 min                        10 min 2 h                   2 h               5 min     S 4 h 55 min   

Waste       3 h                         4 d                             1 d                1 d                    6 d        S 12.5 d 

WORK  IN PROGRESS

Write Up 
Idea

Write 
Story

ImplementationTest
Case DeployIntegrate

& Test
BACKLOG
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Step 3: Implement Rolling planning 

Rolling planning involves two-level 
approach, consisting of: 

1. A high-level overall schedule, 
and

2. A more detailed schedule for 
the next iteration level 

● Rolling planning is needed because of 
”single” delivery

● As we execute each iteration, we reflect 
the learning to the higher-level plan and 
adjust this long-term plan as we see 
necessary

14

Iteration 1 Iteration 2 Iteration 3 Iteration 4
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Step 4: Synchronize the iterations of 
the hardware modules 

● With hardware, we cannot follow/ adjust to 
just any cadence – we need to build the 
frame understanding our own development

● Synchronization allows the creation of 
common testing points 

● If the 4-week cycle syncs every 6 weeks we 
can test every six weeks – with no sync every 
12 weeks

● Quite often we see hardware 
organizations working with a 3-month 
cadence

● What are the options of speeding the 
feedback?
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4 wk 4 wk 4 wk 4 wk 4 wk 4 wk

6 wk 6 wk 6 wk 6 wk
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Step 5: Apply Big room planning for 
managing dependencies and introducing cadence 

● Agile hardware development starts usually 
as a design & process change, but in the 
second phase a tools change is needed

● Visual planning is easy practice” to start 
with à just improves communication, and 
does not require anything specific to work

● A modern, digital “war-room” with up-to-
date information helps to keep everyone 
on the same page; motivated and aligned
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Current
version

Goals

Kanban 
boards

Release 
plans

Expected 
output

Release 
Goals

Daily 
calendar

Issue 
boardMetrics

Weekly 
schedule

Actions

Daily sync

Errors
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Step 6: Define hardware modules 
as Capabilities

Epics

Capabilities Capability Enablers

Features Feature Enablers

Stories Story Enablers

• A common information model allows 
modelling the requirements for the entire 
product – software, and hardware

• A Story may or may not have a 
parenting Feature

• A Feature may or may not have a 
parenting Capability

• All Capabilities, Features, and Stories 
will have an identifier for traceability 
– and for fulfilment of any 
compliance requirements
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They may be several versions of Capabilities 
that go to different releases

• This is supporting modular 
iterations of hardware 
components

Product X

Capability ARelease A

Release B

Release C

Capability B

Capability C
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Step 7: Apply Set-based design 
for managing risk and product lifecycle 

● Find design constraints, and find solutions 
that fit into that space

● Integrate and explore the best solutions 
● Limit the final selection at the very end

● Use set-based design, especially in areas 
that contain the highest reward and 
highest risk

● This allows design to co-evolve in the 
future

19



© WikiAgile Oy 2024. All rights reserved. 

The future: Products as a Service Business? 

● Agile has enabled continuous releases & 
transformed vendors from product to service 
business

● Modules having different life cycles are 
designed to be exchanged in the future. In 
this sequence of product upgrades one 
module at a time is exchanged for a newer 
version. This extends the whole product 
lifecycle significantly. 

● The United Nations, together with the European 
Union, has set ambitious goals for Sustainable 
Development Actions (SDGS). Goal number 12 is 
about Responsible Production and Consumption. 

● One of the goals listed for this initiative is to 
“Support developing countries to strengthen 
their scientific and technological capacity to 
move towards more sustainable patterns of 
consumption and production”. 
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Yes – it is all possible! See SpaceX

Source: Wikipedia, https://en.wikipedia.org/wiki/List_of_Falcon_9_and_Falcon_Heavy_launches
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More Information on 
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