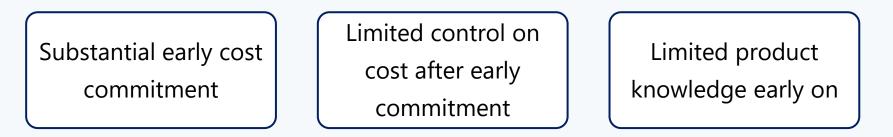
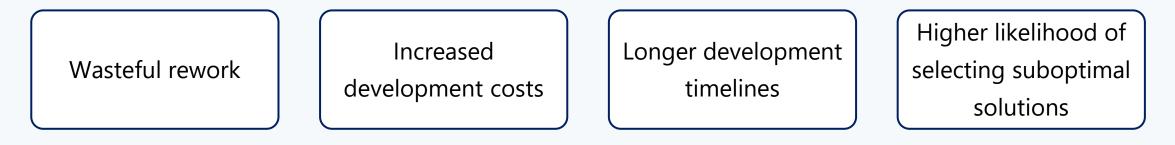
A Systematic Approach for Organizations to Generate Set-Based Knowledge

Dimantha S. Kottawa Gamage

July 11, 2024



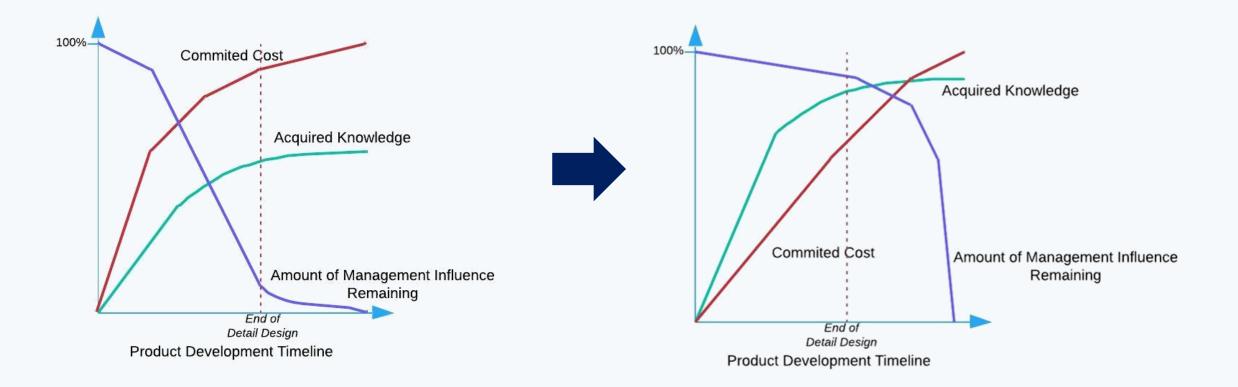
© Copyright by Dimantha Kottawa Gamage 2024. All Rights Reserved


Mountains & Minds

Premise

Typical product development systems prioritize identifying the "best" solution early. However, this approach is not ideal due to three reasons.

Furthermore, early identification of the "best" solution results in,

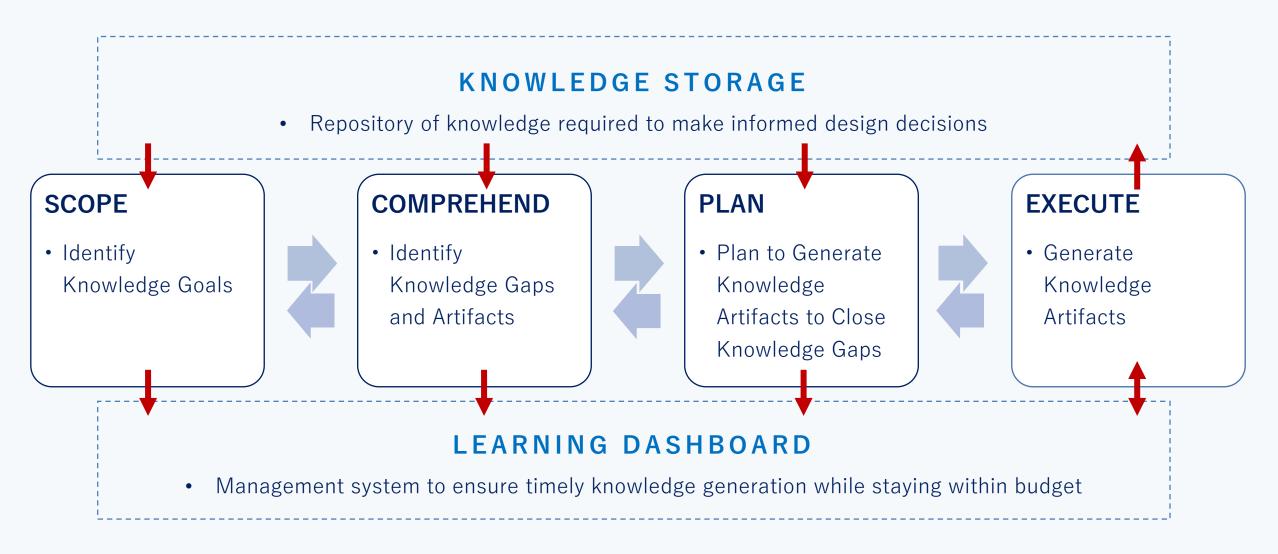

Set-based concurrent engineering focuses on generating knowledge and delaying decision-making to understand the complex and conflicting relationships among a product's design goals, constraints, and design parameters.

Premise (Cont.)

Traditional Product Development

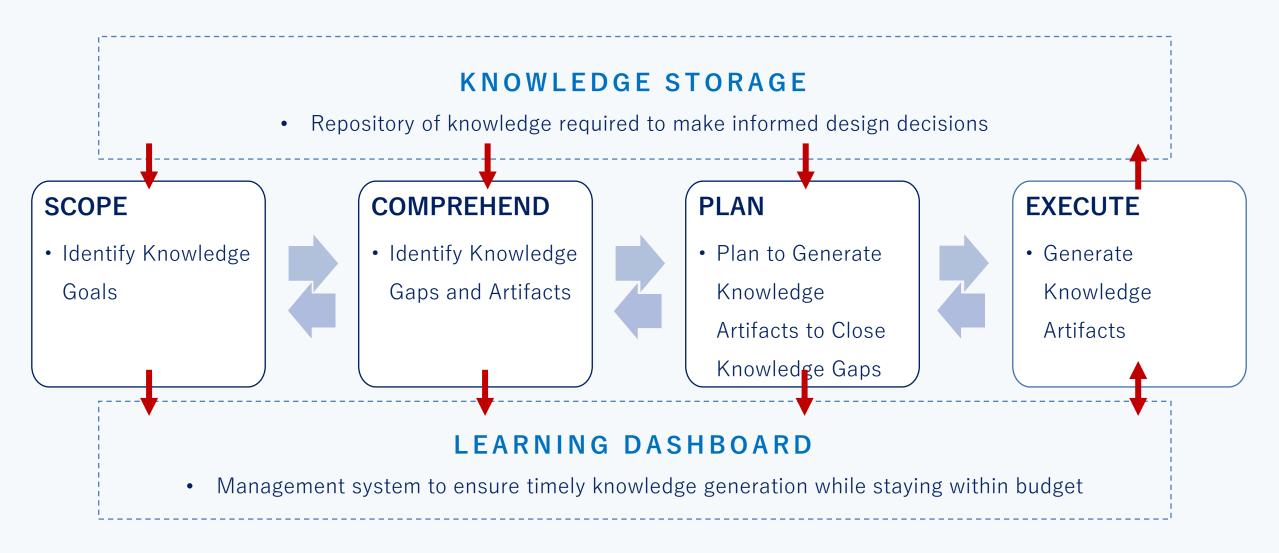
Set-Based Concurrent Engineering (SBCE)

Premise (Cont.)


Design Knowledge Generation (DKG) Framework

Provides a set of tools for systematically generating knowledge. Facilitates tracking the rate of knowledge generation.

Facilitates storing the generated knowledge.



Design Knowledge Generation Framework

Design Knowledge Generation Framework

Applying the DKG

What Type of Product?

 Better suited for complex products where understanding of design problems remains limited.

What Development Stage?

• Necessary to have developed product concepts, and gained a preliminary understanding of the design parameters, design goals, and various subsystems.

How to Initiate Knowledge Generation?

- Knowledge Generation can be triggered when a "Problem" is encountered.
- Problem Solving could focus on either,
 - Attaining established Design Goals.
 - Extending beyond current Design Goals.
- Design Problems should be broken down and solved at their lowest possible level.

Let's look at an Application!

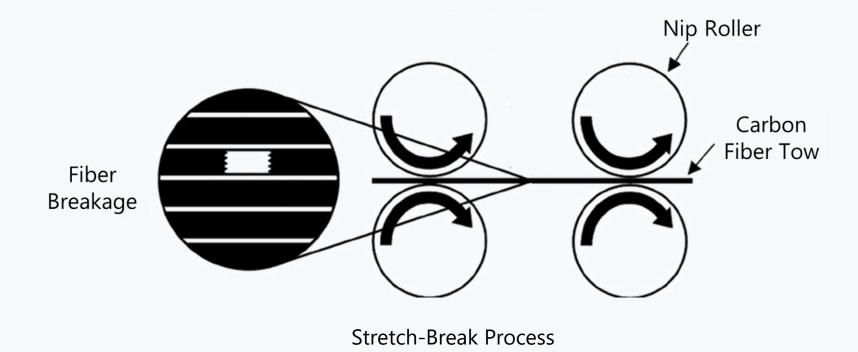
© Copyright by Dimantha Kottawa Gamage 2024. All Rights Reserved

Some Background...

The Stretch Broken Carbon Fiber (SBCF) Program at Montana State University is an R&D initiative aimed at addressing the challenges of manufacturing primary aircraft structures using SBCF.

Why SBCF?

- Carbon fiber is widely used in the aerospace industry for its excellent strength and stiffness.
- However, its inextensibility limits its use in forming complex geometries.
- SBCF involves breaking the fibers at their natural flaws by stretching them resulting in a higher formability.



Scope Stage

Problem:

• Stretch-breaking stops when the nip rollers reach around 115°F, and delamination occurs around 125°F.

Delaminated Nip Rollers

Scope Stage (Cont.)

Design Goal:

• Maintain nip roller temperature around 100°F during operation

Knowledge Goal:

 Quantify cause-and-effect relationships among factors influencing the temperature of the nip roller.

Factors. Design Parameters, Design Goals, Related Subsystems, etc.

Initial Budget and Time allocation to solve the problem could happen at this stage

Comprehend Stage

Step 1: Map Architecture of the Design Problem

		Design Parameters							Outcome	
		Material of NR	Line Speed	Sizing Conc.	Tension of CF	Temp of Sizing	Nip Force	Stretch Ratio	Thickness of NR	Temp of NR
	Material of NR									
	Line Speed									
rameters	Sizing Conc.									
ame	Tension of CF									
Par	Temp of Sizing									
Design	Nip Force									
Des	Stretch Ratio									
	Thickness of NR									

Comprehend Stage (Cont.)

Step 2: Assess Current Knowledge & Highlight Gaps

Assess the potential relationships in the problem architecture using the following rubric.

Level	State of Knowledge
0	We are confident that no relationship exists
1	We hypothesize the existence of a relationship.
2	We have observed a relationship, but we lack data-driven evidence.
3	We have observed a relationship, and we possess data to substantiate it.
4	We have quantified or visualized the relationship.

If a cell is empty: No knowledge is available to confirm or deny a relationship.

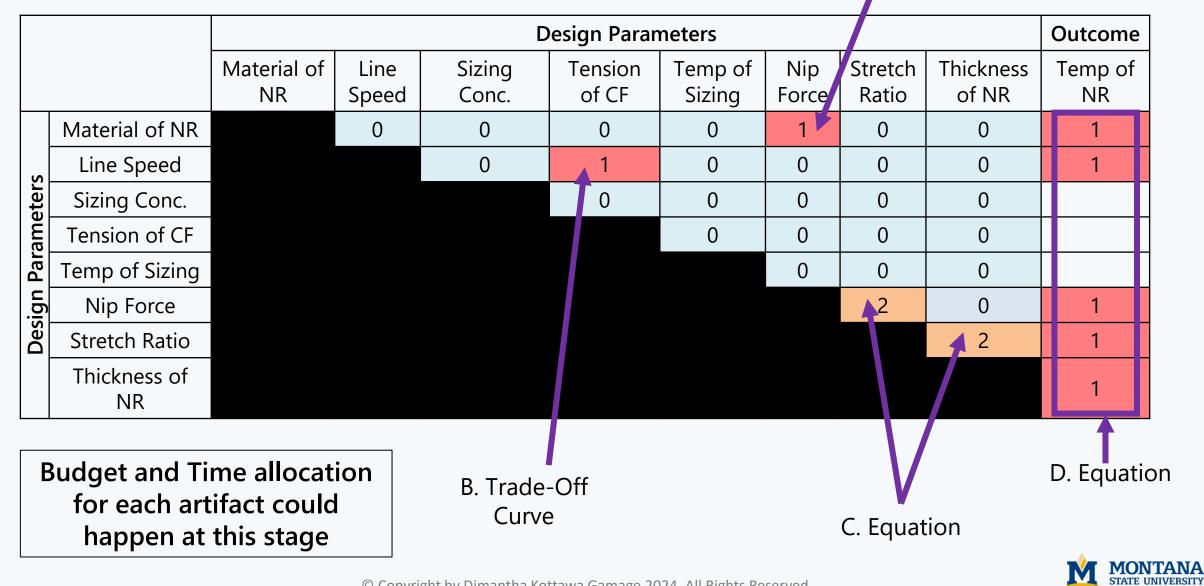
Comprehend Stage (Cont.)

Step 2: Assess Current Knowledge & Highlight Gaps

		Design Parameters						Outcome		
		Material NR	of Line Speed	Sizing Conc.	Tension of CF	Temp of Sizing	Nip Force	Stretch Ratio	Thickness of NR	Temp of NR
	Material of NR		0	0	0	0	1	0	0	1
S	Line Speed			0	1	0	0	0	0	1
eters	Sizing Conc.				0	0	0	0	0	
ram	Tension of CF					0	0	0	0	
Pa	Temp of Sizing	Level	State of Knowledge					0	0	
Design	Nip Force	0	We are confident that no relationship exists					2	0	1
Des	Stretch Ratio	1	We hypothesize the existence of a relationship.						2	1
	Thickness of	2	We have observed a relationship, but we lack data-driven evidence.							
	NR	3 W	Ve have observed a relationship, and we possess data to substantiate it.							1
		4	We have quantified or visualized the relationship.							

For each non-zero Relationship:

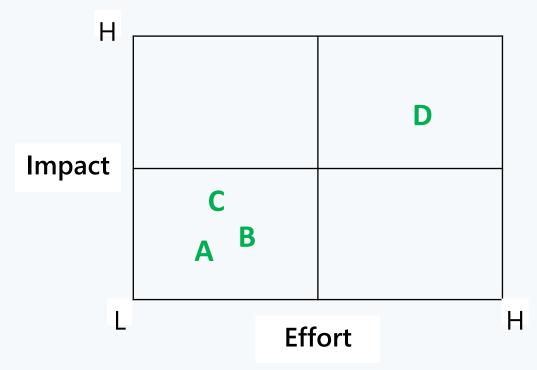
Target Knowledge Level	4 (Quantify or Visualize Relationship)
Knowledge Gap	Current Level – Level 4


Each cell could serve as an access point/interface for retrieving knowledge from the 'knowledge storage'

Comprehend Stage (Cont.)

A. Trade-Off Curve

Step 3: Identify Knowledge Artifacts


Plan Stage

Step 1: Determine Minimum Granularity & Method

Design	Granularity			Artifact			
Parameters	Range	Levels	Α	В	С	D	
Material of NR	70-95 (A)	5					
Line Speed	5-25 (m/s)	5					
Sizing Conc.	1-5 (wt%)	5					
Tension of CF	1.5-4 (lbf)	7					
Temp of Sizing	20-40 (°C)	3					
Nip Force	800-1400 (psi)	7					
Stretch Ratio	5-25 (%)	5					
Thickness of NR	0.2-0.6 (inch)	3					
Method					Experiments		

 For each artifact, different knowledge generation methods such as simulation, experimentation, etc. can be determined.

OPTIONAL Step: Prioritize Artifacts

For each artifact, ask the following questions,

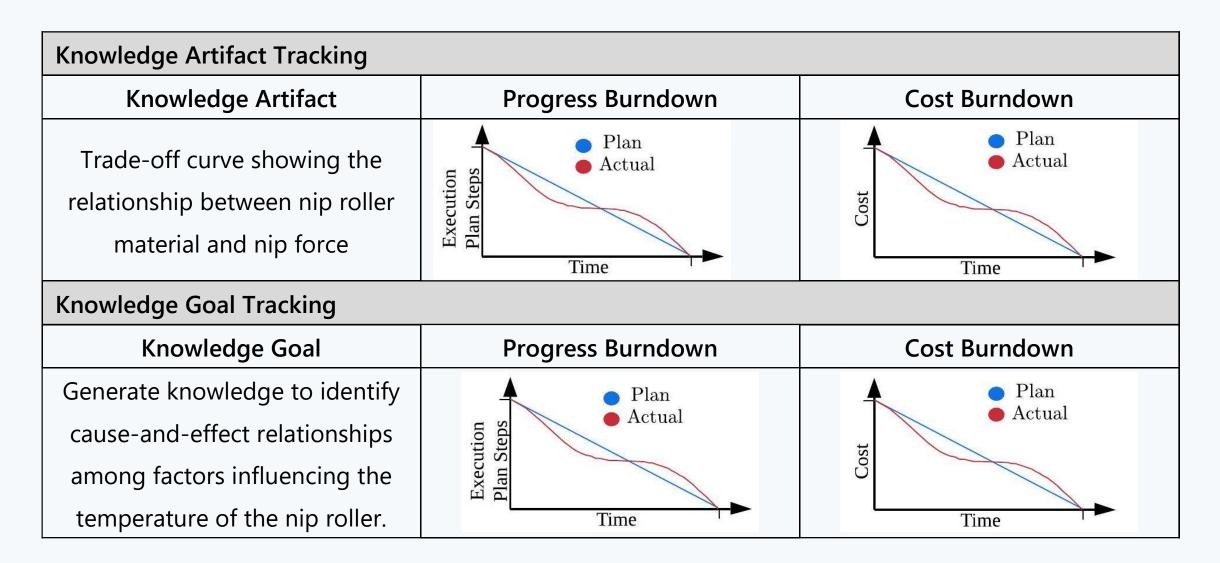
- Impact: How much knowledge is generated by developing the artifact?
- Effort: How much time/resources need to be allocated for developing the artifact?

Plan Stage (Cont.)

Step 2: Develop Action Plan

- Preparation varies based on the method chosen for artifact development.
- Following is an example action plan we developed for Artifact D.

	Plan Time			Actual Time	
Activity	Time Required	Date(s)	Who	Time Required	Date(s)
Outline Experiment Procedure					
Identify equipment, materials and personnel required.					
Budget Cost					
Acquire material/component for experimental and testing setups					
Setup the experiment configuration					
Finalize the Data capture and analysis plan					
Setup the testing configuration					
Conduct experiments and capture data					
Analyze Data					



Execute Stage

• Implement planned activities

Learning Dashboards

Conclusion

The DKG

- Provides a set of tools for systematically generating knowledge.
- Facilitates tracking the rate of knowledge generation.
- Facilitates storing the generated knowledge.

Application

- Better suited for complex products where understanding of design problems remains limited.
- Necessary to have developed product concepts, and gained a preliminary understanding of the design parameters, design goals, and various subsystems.
- Trigger Knowledge Generation when a "Problem" is encountered.

Next Steps

• Continue applying the framework with the SBCF research group and partner with at least one company to implement the framework.

Thank You

dimantha.kgs@gmail.com