Knowledge Flow in Product Development

Charlie Baker

Lean Powered Innovation

06FE25

Charlie Baker Bio

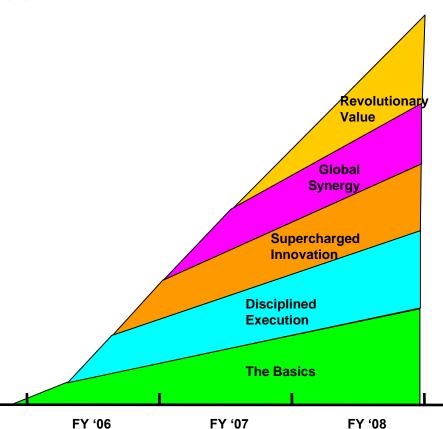
- GM Executive Director and Global Functional Leader for Interiors Engineering – 2011 -2016
- Johnson Controls Group Vice President for Automotive Experience 2005 – 2009
- Honda R&D North America Vice President, Chief Engineer of Acura CL, Acura MDX, Honda Pilot, Honda Accord – 1990 – 2005
- GM Saturn and Pontiac Motor Division Engine design and test engineer – 1982 - 1990

Key message points

- Knowledge flow in Product Development is the equivalent of product flow in manufacturing.
- PDCA is the foundation of knowledge flow and needs to be universally applied.
- Knowledge flow consists of creation, collection, curation and application.
- The "who" of knowledge management (SMTEs) is as important as the "how".
- Diagnose the knowledge flow opportunities to prioritize efforts relevant to the business. \$ based metrics are particularly useful.

The challenge of JCI Product Development

- Joined JCI with responsibility for North American Engineering in 2005 roughly \$8B per year sales in seats, interiors and electronics to the auto industry.
- 7 major seat programs underway all in distress and customers were very upset. Many engineering mistakes, program delays and failure to meet specifications, which were quite complex. Roughly 500 engineers.
- Analysis of the waste for engineering mistakes for the previous year: \$83M in excess engineering time not chargeable to the customer and tooling that had to be scrapped because of design changes.


Knowledge flow in traditional Product Development

- Repeated mistakes.
- Limited and sporadic use of PDCA.
- Unclear responsibility for knowledge creation, collection, curation, and application.
- "Systems" that are avoided or not used.

Overall approach and strategy

- Diagnose the problem create waste metrics denominated in \$
- "The Basics": Basic Engineering Process
- "Disciplined Execution":
 - Requirements engineering
 - SMTEs
 - Design reviews

Basic Engineering Process

Plan "Work as a team, use the whiteboard"	Grasp the situation, go and see
1) Define Problem or Objective	 Use ACTUAL parts, drawings, data, location, situation, history Understand customer and program requirements
2) Establish Targets	 What is the best measurement scale? Clarify system targets. Flowdown targets to subsystems, and components Quantify and consider variation List important assumptions
3) Understand the Physics	 What is actually happening? What should be happening? What is the root cause? Diagram or graph the physics with the target and variation. Develop hand calculations, simulations, transfer functions to describe the physics and variation
4) Brainstorm Alternatives	 Get others involved with non-basic problems Capture the manufacturing process requirements Work as a team, build consensus
5) Analyze and Rank Alternatives	 Use Pugh Analysis, tradeoff curves, or other appropriate method and actual data Use understanding of physics and manufacturing process to meet targets
6) Evaluate Impact in all Areas	 Consider unintended consequences for selected concept Consider constraints, trade-offs, interactions, variation, etc. to mfg, cost, mass, timing etc. Revise the Pugh Analysis
 Create Visual, Detailed, Double-ended Schedule 	 Work back from critical objectives and forward from current state to create the schedule Clarify risks (technical, commercial, & timing) and plan to mitigate risks Input who, what, when, where, how, measures (process & results) Identify and obtain support or resources from others.
Do	Conduct trials as needed.
8) Execute Solution	 8) Implement according to plan Minimize product performance variation. Set tolerances for ease of manufacturing and low control
Check	Go and see results; confirm with data
9) Confirm Results	9) • Check against targets • Assure manufacturing processes are capable • If not what expected then • Check assumptions • Revise plan, develop and execute again
Act	
10) Reflect & Transfer to Knowledge Base	10) · Document and standardize · Prevent recurrence · Educate others

BEP example

The start of methodical creation of knowledge (documentation of a standard problemsolving process).

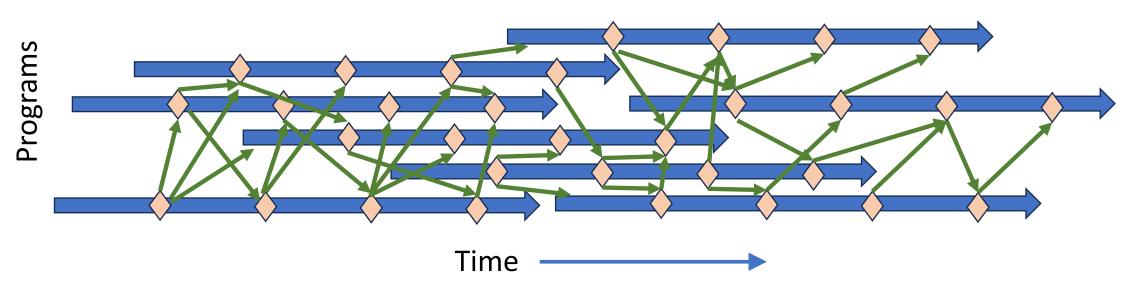
Example is not of a good A3, but shows the coaching expected.

Previous AB + Additional Mail-ups RT Rev. # / Date Issue Owner issue # Program: L42A - Front / 2nd Row A / 08-Feb-06 Scott Profozich Chief Engineer Director of Engineering V.P. of Engineering WPower Recliner Operation Durability Issue Bruce Hiemstra David Kazyak Title: Jack Hall Analyze and Rank Alternatives Problem Statement: Score recliner acetal bearing has significant wear causing excessive Safety CSO Total looseness in system, Mass Risk Timing Spec Cost 15 3 1 2 3 #1 1 5 13 2 3 2 1 #2 4 Establish Targets 8,000 cycles [2,000 full (102") / 6,000 partial (+10" from design)] with 35 kg 8 #3 3 1 @ 245mm. Use a voltage of 14.4V and in-line resistance of 0.20. Criteria 13 #4 10 will be the presence of acetal after completion of cycles. 1 #5 Higher Better? USC O AX Not Numbers Lower Better ? Understand the Physics Design bearing based on following variables: Check Impact in all Areas tus 1- Load capacity (psi) No Impact Balleve 2- Maximum temperature (°F) 3- Maximum speed (fpm) 4- PV limit (unlubricated) this (See attached calculations and charts) Create Visual, Detailed Double Ended Schedule Brainstorm Alternatives Improve the bearing wear by the following: 4/1 3/1 Owner 2/1 Improve the surface finish of the carrier wedge. **TK Action Items** 2- Increase the hardness of the bearing Profozich ∇__ ∇ 2/10 1- Lab info on carrier surface finish. 3- Prevent damage to the bearing during assembly Profozich V 2/10 2- Lab info on bearing material. 4- Understand interaction of components I.e. bearing / carrier interaction Bittner V V 2/6 3- Test damaged bearing. and freeplay wedge / carrier interaction. Hiemstra ♥ ♥ 2/10 4- Resolution plan for damaged bearing. 5- Control bearing properties by adding durability requirement. ▽ 3/31 Profozich 5- Rerun TK PV test based on #3. 6- Understand effects of dwell time on bearing wear 7- Understand effects of stall loads on hard stop. **Core Action Items** Shao V V 2/3 1- PV calculations w/ updated properties. ♥ 2/17 Bittner V 2- Test polished carrier. V 2/17 Bittrier V 3- Test without freeplay wedge. V 3/31 4- Peform hard stop study Bittner ▽ 3/31 Bittner 5- Perform dwell time study. Bruce to Reviews "Example" A3 A3 Due 2/13/06 New w/scott.

Some Notes As

Requirements engineering

- "5 why" analysis of the \$83M waste generated by Engineering: most was caused by agreeing to requirements in the quote process that could not be achieved by the proposed designs.
- Business units were aligned to customers, and cross business unit communication and collaboration in the quote process were weak.
- Created "Requirements Engineering" function to sign off on quote packages before presentation to the customer.
- Implemented with a staff of 2 to start (Director and Senior Engineer).


Subject Matter Technical Experts (SMTEs)

- Requirements Engineering a critical first step, but not adequate to manage all important knowledge.
- SMTEs position created to collect, curate and apply knowledge.
- "Defense" solving problems, avoiding risk (DFMEA, FTA, PFMEA), competitive benchmarking.
- "Offence" technology prospecting, innovation, creation of solution sets, supporting commercial strategy, driving VA/VE, creation of cost tables.
- 12 SMTE + Director of SMTEs positions were created.
- Goals set for program efficiency, product cost and product quality.

Design reviews

- Design reviews are the touch points for knowledge flow.
- Content varies by phase of the program
 - Innovation
 - Creation/ application of preferred solution sets
 - Requirements (in quoting process)
 - Risk mitigation and optimization
 - DFMEA/ PFMEA/ FTA application
 - Problem solving
 - VA/VE and cost reduction
- SMTEs have sign off responsibility, but collaboration is critical.

Knowledge flow

<u>Traditional Engineering knowledge flow problem statement:</u>

Knowledge from individual programs is siloed with the only sharing being "lessons learned" databases. These are frequently not up to date, lack background and context ("why"), and are treated by teams as a "check the box" exercise.

Lean knowledge flow:

Knowledge is created, collected, curated and applied thru A3 creation by the entire organization, collection, curation and application by SMTEs in design reviews with program teams at critical points in the program.

Results

- Waste metrics were mostly improved by A3 culture and the implementation of Requirements Engineering.
- Reflection conducted 24 months after implementation yielded waste numbers too low to measure (from \$83M to less than \$1.0M)
- SMTE impact was largely to improve program execution efficiency/ cost, product cost and product quality (roughly 30% improvement after 3 years).
- The larger story is documented in Chapter 11 of "The Toyota Way to Continuous Improvement" by Liker and Franz

Key message points

- Knowledge flow in Product Development is the equivalent of product flow in manufacturing.
- PDCA is the foundation of knowledge flow and needs to be universally applied.
- Knowledge flow consists of creation, collection, curation and application.
- The "who" of knowledge management (SMTEs) is as important as the "how"
- Diagnose the knowledge flow opportunities to prioritize efforts relevant to the business. \$ based metrics are particularly useful.